
Win500 Remote Control & Monitoring Protocol

1. Data types

a. char: 8-bit unsigned value, 0x00-0xFF
b. short: 16-bit unsigned value, 0x0000-0xFFFF
c. long: 32-bit unsigned value, 0x00000000-0xFFFFFFFF
d. All multi-byte values are sent “little-endian” (least-significant byte sent first)

2. Connection to server

a. TCP connection to IP : Port specified in Win500 server
b. Data sent as “stream of bytes” (packetization is above the transport layer)

3. Packet structure

a. char: Command: value from list of commands below
b. short: Length: total size of packet, in bytes
c. long: Timestamp: sender’s “millisecond timer”, for syncing received

packets to real time at receiver
d. char[]: Payload: <Command>-dependent bytes
e. short: Checksum: sum of all previous bytes (starting with <Command>)

4. Commands – Win500 to Remote Client

a. ‘S’ (0x53) : Status
Payload length: 16
Payload[0] = current scanner mode:

0: Tune
1: Scan
2: Manual
3: Program
4: Search
5: Weather
9: Sweeper/Stalker

Payload[1] = Flags (bitmap)
bit 0: squelch open
bit 1: audio unmuted
bit 2: XF flag
bit 3: HD2 flag
bit 4: HD5 flag
bit 5: set if a “mobile/base” unit
bit 6: set if backlight is in “dim” mode

Payload[2,3] = short indicating battery level A/D value. ORed with 0x8000
if on external power
Payload[4,5] = short indicating RSSI value
Payload[6,7] = short indicating “zeromatic” value
Payload[8] = RED LED value
Payload[9] = GRN LED value

Payload[10] = BLU LED value
Payload[11,14] = currently-tuned frequency, in Hz
Payload[15] = current rx mode: AM=0, FM=1, NFM=2

b. ‘L’ (0x4C) : LCD Data – full
Note: Win500 also supports connections to the PSR-310/410 scanners,
which have a 5th line of LCD text. If Win500 is connected to such a
scanner, then the payload will be 82 bytes long: 80 bytes of LCD data,
with the icons at offsets 80 and 81. It is up to the client app to look at the
length field, verify that it indicates a payload of 66 or 82, then decide how
much LCD data is present and how to display it. The information below is
for a non-310/410 scanner.

Payload length : 66
Payload[0,63] = LCD text, top-left to bottom-right
Payload[64] = LCD Icons (bitmap)

bits 0-2: signal bars, 0-5
bit 3: ‘S’
bits 4-5: battery

Payload[65] = LCD Icons (bitmap)
bit 0: ‘F’
bit 1: ‘G’
bit 2: ‘A’
bit 3: ‘T’
bit 4: <up arrow>
bit 5: <down arrow>
bit 6: backlight on

c. ‘A’ (0x41) : Audio samples, compressed
Payload length : variable, must be deduced from packet’s Length value.
Should be verified against ‘dwBufferLength’ field in the WAVEHDR
structure.
Payload[] : audio sample data

d. ‘a’ (0x61) : Audio samples, uncompressed
Payload length : variable, must be deduced from packet’s Length value.
Should be verified against ‘dwBufferLength’ field in the WAVEHDR
structure.
Payload[] : audio sample data

e. ‘C’ (0x43) : Server information
Payload length: 5
Payload[0] = Flags (bitmap)

bit 0: Win500 server allows control of scanner
Payload[1] = Win500’s remote protocol version
Payload[2] – Payload[3] = <reserved>

Payload[4] = ‘D’ if server instructing client to close the connection

f. ‘l’ (0x6C) : Log Message
Payload length: variable
Payload[] = string data, or special flags

This represents text strings or control messages for the log message
window as seen in the Win500 Remote Client Windows application. On a
small, remote device, it may not be desired to handle these messages.

If the payload length is 1, then the payload consists of a single byte
indicating a control flag. At present, the only valid control flag value is
0xFF. This tells the client to erase the last line of the log message window
(generally, because a new string will be coming to replace it, e.g. when a
new CTCSS value has been detected on a “searching” channel).

If payload length is greater than 1, then the payload is a <nul>-terminated
ASCII string of text for the log message window. The client should verify
that the last byte of the payload, as determined by the payload length, is
really 0x00.

g. ‘t’ (0x74) : “Chat” message
Payload length: variable
Payload[] = string data

This represents a text string sent via Win500’s “Chat Send” function. It’s a
<nul>-terminated string and should be validated in the same way as the ‘l’
command above. On a small, remote device, it may not be desired to
handle these messages.

5. Commands – Remote Client to Win500
a. ‘t’ (0x74) : “Chat” message

Payload length: variable
Payload[] = string data

This represents a <nul>-terminated ASCII text string sent to Win500, for
display in its log message window. A small, remote device may not wish to
generate this message.

b. ‘c’ (0x63) : Info request
Payload length: 0

This asks Win500 to send the “Server Information” message above
(command ‘C’, 0x43). The client should not sit and wait for a response; it
should continue normal operation and handle the response if/when it is
received.

c. ‘k’ (0x6B) : Key press data
Payload length: 1
Payload[0] = key code

This is a key press that Win500 will forward to the connected scanner. The
key values can be found in the PSR-500 manual, in Appendix A “Remote
Control Protocol”.

6. Audio sample format

All audio samples correspond to Microsoft’s WAV format, 8000 samples per
second, 8 bits per sample, monaural. Uncompressed data is plain PCM, while
compressed data is GSM6.10. Each Payload[] starts with a Microsoft
WAVEHDR structure; the remainder of the payload is the sample data. The
“pointer” members of the WAVEHDR structure are not valid.

It is presumed that the reader is familiar with whatever coding is required to
“play audio” on his target platform / environment, so details are not specified
here. However, on the Windows Mobile (“Pocket PC”) platform, I used the
various waveOut APIs, such as waveOutOpen, waveOutSetVolume,
waveOutPrepareHeader, waveOutWrite, waveOutUnprepareHeader,
waveOutReset, and waveOutClose.

7. Recommended processing/parsing of received data
Since Win500 sends its data over the stream-oriented TCP transport, the
client will not receive “packets” from the transport. Instead, TCP delivers a
stream of bytes. The client must parse the received stream, looking for
command bytes, extracting (and validating) the “length” field, then validating
the checksum. Only after completely validating a received packet should the
client attempt to act on that data. This is especially true if there is some active
TCP agent (like my TCPMux program) between Win500 and the client app.

Here is some pseudo-code describing the recommended method:

// Some function that tells us the socket is still connected to the host

int SocketConnected(void);

// Some function that reads data from a socket, returning the number

// of bytes read. Places the data at <buffer>, only reading up to

// <availableSpace>

int SocketReceive(unsigned char *buffer, int availableSpace);

// Some function that processes valid received packets.

void ProcessPacket(unsigned char Cmd, unsigned char *Payload, int PayloadLen);

// the standard C "memmove()" function

void *memmove(void *dest, const void *src, size_t count);

const int RxBufferSize = 20000;

unsigned char RxBuffer[RxBufferSize];

http://msdn.microsoft.com/en-us/library/aa909814.aspx
http://msdn.microsoft.com/en-us/library/aa909814.aspx

int RxLength;

RxLength = 0;

while (SocketConnected())

 {

 // try to get some data from the socket

 int bytes = SocketReceive(RxBuffer + RxLength, RxBufferSize - RxLength);

 if (bytes) // got some data

 {

 RxLength += bytes;

 int done = 0;

 int needBufferShift = 0;

 do

 {

 // if some 'valid' check below failed, throw away the first received

 // byte

 if (needBufferShift)

 {

 memmove(RxBuffer + 0, RxBuffer + 1, RxLength - 1);

 RxLength--;

 needBufferShift = 0;

 }

 // make sure we have the minimum byte count for a packet

 if (RxLength < 9)

 {

 done = 1;

 continue;

 }

 // get the "command" byte

 unsigned char cmd = RxBuffer[0];

 // Make sure command byte is valid. Also take this opportunity to get

 // an "expected packet length"

 int expectedSize = 0, expectedSize310 = 0;

 switch (cmd)

 {

 // invalid command byte. Toss it and keep trying

 default:

 needBufferShift = 1;

 continue;

 // fixed-size packets

 case 'S':

 expectedSize = 25;

 break;

 case 'L':

 expectedSize = 75;

 expectedSize310 = 91;

 break;

 case 'C':

 expectedSize = 14;

 break;

 // variable-length packets... just leave the expected sizes == 0

 case 'A':

 case 'a':

 case 'l':

 case 't':

 break;

 }

 // Note that in the above, we handled ALL possible commands, even those

 // we may not be interested in (e.g. 't' and 'l'). We do this so that

 // we can more easily sync to the actual packet boundaries

 // Now extract the total packet length

 int packetLen = (int)RxBuffer[1] + (int)RxBuffer[2] * 256;

 // If the indicated length is something ridiculous, then the packet

 // can't possibly be valid (or we're not yet synced)

 if (packetLen < 9 || packetLen > 20000)

 {

 needBufferShift = 1;

 continue;

 }

 // For the fixed-size packets, make sure it matches what we expect. If

 // it doesn't, toss the first byte as we did above and continue

 if (expectedSize && packetLen != expectedSize &&

 expectedSize310 && packetLen != expectedSize310)

 {

 needBufferShift = 1;

 continue;

 }

 // look at the variable-length packets, and make sure <packetLen> looks

 // good...

 // Ah - but before we look at those packets, we have to make sure we

 // have enough data (we're going to be looking into the packet!).

 // If we don't have enough bytes, wait for more

 if (RxLength < packetLen)

 {

 done = 1;

 continue;

 }

 // OK, now we'll go look at the variable-length packets

 // first, the audio packets

 if (cmd == 'A' || cmd == 'a')

 {

 LPWAVEHDR pWaveHdr = (LPWAVEHDR)(RxBuffer + 7);

 expectedSize = 9 + sizeof(WAVEHDR) + pWaveHdr->dwBufferLength;

 if (packetLen != expectedSize)

 {

 needBufferShift = 1;

 continue;

 }

 }

 // now the log message packet

 if (cmd == 'l')

 {

 // make sure it's either a single 0xFF byte or a <nul>-terminated

 // string

 if ((packetLen == 10 && RxBuffer[7] != 0xFF) ||

 (packetLen != 10 && RxBuffer[packetLen-3] != 0x00))

 {

 needBufferShift = 1;

 continue;

 }

 }

 // check for chat text. Make sure it's null-terminated

 if (cmd == 't')

 {

 if (RxBuffer[packetLen-3] != 0x00)

 {

 needBufferShift = 1;

 continue;

 }

 }

 // calculate checksum on rx data

 unsigned short rs;

 int i;

 for (i=0, rs=0; i<packetLen-2; rs += RxBuffer[i++]);

 // extract received checksum

 unsigned short s = (unsigned short)RxBuffer[packetLen-2] +

 (unsigned short)RxBuffer[packetLen-1] * 256;

 // if calculated checksum doesn't match the received, toss first byte

 // and keep trying

 if (s != rs)

 {

 needBufferShift = 1;

 continue;

 }

 // Wheee! We have a complete, valid packet. Go do something (or

 // nothing) with it...

 ProcessPacket(cmd, RxBuffer + 7, packetLen - 9);

 // And remove the packet from the receive buffer

 if (RxLength == packetLen)

 // shortcut... buffer had exactly one packet, so just zero the

 // length

 RxLength = 0;

 else

 {

 memmove(RxBuffer, RxBuffer + packetLen, RxLength - packetLen);

 RxLength -= packetLen;

 }

 // keep looping as long as we have a possible candidate packet

 } while (! done);

 }

 }

